
MSFragger Manual
(build 20170103.0)

Introduction

MSFragger is an ultrafast database search tool for peptide identifications in mass
spectrometry-based proteomics. It differs from conventional search engines by
computing similarity scores in a fragment-centric fashion using a theoretical fragment
index of candidate peptides. The speed of MSFragger makes it particularly suitable for
‘open’ database searches, where the precursor mass tolerance is set to hundreds of
Daltons, for the identification of modified peptides. MSFragger is implemented in the
cross-platform Java programming language and is compatible with standard proteomics
file formats such as MGF/mzXML/mzML/pepXML.

Equipment

Computer Hardware requirements

The processor requirements of MSFragger depends on the complexity of your search
(and your patience to wait for search results). For an open search (500Da precursor
mass window) using a tryptic digest of the human proteome, a single processor core
can search roughly 40,000 MS/MS spectra in under an hour. MSFragger scales well
with the number of processor cores and runtimes of under 2 minutes per file have been
achieved using a 28-core workstation. A desktop workstation with a quad core
processor is sufficient for most simple workflows.

MSFragger requires substantial amounts of memory due to its in-memory fragment
index. While MSFragger can operate with less memory than needed to store the
fragment index, it will cause index fragmentation where it breaks the search into multiple
passes, searching each input file against a small segment of the index at a time (which
greatly increases the runtime). For the human Uniprot protein database with reversed
decoys, approximately 3700 MB of memory is needed to prevent index fragmentation.
The actual size of the fragment index is substantially lower (MSFragger uses a very
conservative estimate of the available free memory to avoid out of memory
situations). Specifying common modifications may boost memory requirements to
6 GB. Semi-tryptic, non-enzymatic, and phospho searches may take tens of gigabytes

to avoid fragmented searches. Limiting the range of peptide lengths can reduce the
search space and reduce memory consumption in such cases. While fragment index
fragmentation is undesirable, it may be unavoidable in certain instances.

We recommend at least 8GB of memory for workflows involving standard tryptic
digestions.

Operating System requirements

MSFragger has been tested on Mac OS X, Windows 7, and a number of Linux
distributions. Note that a 64-bit operating system is required to access more than 4GB
of memory.

Java requirements

MSFragger is written using Java 1.8 and requires the Java 8 Runtime Environment. We
recommend the Oracle Java 8 Runtime (download and installation instructions are
available at ​www.java.com​).

Procedure

Preparing Input Files

Mass spectrometry data must first be converted to one of the supported MS/MS input
formats of MGF, mzXML, or mzML. A popular option for converting from vendor file
inputs and between various input formats is Proteowizard
(​proteowizard.sourceforge.net​). MSFragger determines the appropriate data parser to
use based on the file extension (.mgf for MGF, .mzXML for mzXML, and .mzML for
mzML) and does not make inferences from file contents (i.e. naming a mzML file with
the .mzXML extension will lead to unpredictable results or crashes).

The protein database must be supplied in FASTA format. MSFragger does not have
the capability to generate decoys internally so they must be generated externally and
appended to the protein database before running MSFragger.

Configuring MSFragger

Extract the MSFragger.jar into your working directory along with the sample
configuration file called fragger.params. MSFragger is configured using a text

http://www.java.com/
http://proteowizard.sourceforge.net/

parameters file. The parameters file is passed as the first argument to MSFragger and
has no restrictions on names or file extensions (so one might want to name their
configuration files to be more descriptive such as Uniprot_open_withmods.txt) after
editing the parameters file for a particular analysis.

Parameter names are given left of the equal sign and parameter values are given to the
right (e.g. num_threads = 4). White spaces are trimmed from the ends of each value by
MSFragger. All text to the right of (and including) the # sign of each line is discarded so
can be used for comments in the parameters file.

General Parameters

num_threads Number of CPU threads to use, should be set to the
number of logical processors; a value of 0
(auto-detect) will cause MSFragger to use the
auto-detected number of processors

Default: 0

database_name Path to the protein database file in FASTA format

Search Tolerances

precursor_mass_tolerance Precursor mass tolerance (window is +/- this value)

Default: 20

precursor_mass_units Precursor mass tolerance units (0 for Da, 1 for ppm)

Default: 1

precursor_true_tolerance True precursor mass tolerance (window is +/- this
value). Used for tie breaker of results (in spectrally
ambiguous cases) and zero bin boosting in open
searches (0 disables these features). This option is
STRONGLY recommended for open searches.

Default: 0

precursor_true_units True precursor mass tolerance units (0 for Da, 1 for
ppm)

Default: 1

fragment_mass_tolerance Fragment mass tolerance (window is +/- this value)

Default: 20

fragment_mass_units Fragment mass tolerance units (0 for Da, 1 for ppm)

Default: 1

isotope_error Isotope correction for MS/MS events triggered on
isotopic peaks. Should be set to 0 (disabled) for open
search or 0/1/2 for correction of narrow window
searches. Shifts the precursor mass window to
multiples of this value multiplied by the mass of
C13-C12.

Default: 0

In-silico Digestion Parameters

search_enzyme_name Name of enzyme to be written to the pepXML file.

Default: Trypsin

search_enzyme_cutafter Residues after which the enzyme cuts (specified as a
string of amino acids)

Default: KR

search_enzyme_butnotafter Residues that the enzyme will not cut before
(misnomer: should really be called butnotbefore)

Default: P

num_enzyme_termini Number of enzyme termini (0, 1, or 2 for
non-enzymatic, semi-enzymatic, fully-enzymatic)

Default: 2

allowed_missed_cleavage Allowed number of missed cleavages

Default: 2

digest_min_length Minimum length of peptides to be generated during
in-silico digestion

Default: 7

digest_max_length Maximum length of peptides to be generated during
in-silico digestion

Default: 64

digest_mass_range Mass range of peptides to be generated during
in-silico digestion in Daltons (specified as a space
separated range)

Default: 500.0 5000.0

Variable Modification Parameters

clip_nTerm_M Specifies the trimming of a protein N-terminal
methionine as a variable modification (0 or 1)

Default: 0

variable_mod_01 .. 07 Sets variable modifications. (variable_mod_01 to
variable_mod_07). Space separated values with 1st
value being the modification mass and the second
being the residues (specified consecutively as a
string) it modifies.

* is used to represent any amino acid
[is a modifier for protein N-terminal
] is a modifier for protein C-terminal
n is a modifier for peptide N-terminal
c is a modifier for peptide C-terminal

Syntax Examples:
15.9949 M (for oxidation on methionine)
79.66331 STY (for phosphorylation)
-17.0265 nQnC (for pyro-Glu or loss of ammonia at
peptide N-terminal)

Example (M oxidation and N-terminal acetylation):

variable_mod_01 = 15.9949 M
variable_mod_02 = 42.0106 [*

allow_multiple_variable_mods_on_residue Allow each amino acid to be modified by multiple
variable modifications (0 or 1)

Default: 1

max_variable_mods_per_mod Maximum number of residues that can be occupied by
each variable modification (maximum of 5).

Default: 2

max_variable_mods_combinations Maximum allowed number of modified variably
modified peptides from each peptide sequence,
(maximum of 65534). If a greater number than the
maximum is generated, only the unmodified peptide is
considered.

Default: 5000

Spectrum Processing Parameters

minimum_peaks Minimum number of peaks in experimental spectrum
for matching

Default: 10

use_topN_peaks Pre-process experimental spectrum to only use top N
peaks

Default: 50

minimum_ratio Filters out all peaks in experimental spectrum less
intense than this multiple of the base peak intensity

Default: 0.0

clear_mz_range Removes peaks in this m/z range prior to matching.
Useful for iTRAQ/TMT experiments (i.e. 0.0 150.0).

Default: 0.0 0.0

max_fragment_charge Maximum charge state for theoretical fragments to

match (1-4).

Default: 2

override_charge Ignores precursor charge and uses charge state
specified in precursor_charge range (0 or 1)

Default: 0

precursor_charge Assume range of potential precursor charge states.
Only relevant when override_charge is set to 1.
Specified as space separated range of integers.

Default: 1 4

Open Search Features

track_zero_topN Track top N unmodified peptide results separately
from main results internally for boosting features.
Should be set to a number greater than
output_report_topN if zero bin boosting is desired.

Default: 0

zero_bin_accept_expect Ranks a zero-bin hit above all non-zero-bin hit if it
has expectation less than this value.

Default: 0.0

zero_bin_mult_expect Multiplies expect value of PSMs in the zero-bin
during results ordering (set to less than 1 for
boosting).

Default: 1.0

add_topN_complementary Inserts complementary ions corresponding to the top
N most intense fragments in each experimental
spectra. Useful for recovery of modified peptides
near C-terminal in open search. Should be set to 0
(disabled) otherwise.

Default: 0

Modeling and Output Parameters

min_fragments_modelling Minimum number of matched peaks in PSM for
inclusion in statistical modeling

Default: 3

min_matched_fragments Minimum number of matched peaks for PSM to be
reported. We recommend a minimum of 4 for
narrow window searching and 6 for open searches.

Default: 4

output_file_extension File extension of output files

Default: pep.xml

output_format File format of output files (pepXML or tsv)

Default: pepXML

output_report_topN Reports top N PSMs per input spectrum

Default: 1

output_max_expect Suppresses reporting of PSM if top hit has
expectation greater than this threshold

Default: 50.0

Static Modification Parameters

add_Cterm_peptide Statically add mass in Da to C-terminal of peptide

Default: 0.0

add_Nterm_peptide Statically add mass in Da to N-terminal of peptide

Default: 0.0

add_Cterm_protein Statically add mass in Da to C-terminal of protein

Default: 0.0

add_Nterm_protein Statically add mass in Da to N-terminal of protein

Default: 0.0

add_C_cysteine
...
add_X_usertext

Statically add mass to cysteine (or whatever amino
acid is specified after ‘add_’).

Examples:
add_C_cysteine = 57.021464
add_K_lysine = 144.1021

Default: 0.0

Running MSFragger

Performance Considerations for Batch Processing

MSFragger allows multiple MS/MS input files to be processed in a batch. Passing
multiple files to MSFragger at once allows MSFragger to reuse the fragment index for
subsequent MS/MS run. This is particularly important for narrow window searches
which may only take fractions of a second.

On computers or compute clusters with many processor cores, we highly recommended
that MSFragger is set to process files sequentially with all available processor cores
rather than running multiple instances of MSFragger in parallel (assigning a smaller
number of cores to each). This reduces initialization times and allows the fragment
index to be re-used, at the same time reducing overall memory requirements.

Launching MSFragger

Ensure that you have placed MSFragger.jar in your working directory and have modified
the parameters file to reference your protein database. MSFragger generates auxiliary
files during database search so it is critical that ​MSFragger must have write access to
the directories containing the protein database AND the MS/MS data files​.

Determine the amount of system memory available that you would like to make
available to MSFragger. This will be specified by the Java maximum heap size
parameter -Xmx (e.g. -Xmx3700M for 3700 MB or -Xmx8G for 8GB).

MSFragger takes the first argument as the input parameters file, followed by a list of
one or more MS/MS data files.

Examples:
java -Xmx8G MSFragger.jar fragger.params HeLa_run1.mzML HeLa_run2.mzML
java -Xmx8G MSFragger.jar fragger.params *.mzML

The ​-Xmx flag is very important ​to ensure that MSFragger has access to sufficient
memory to efficiently perform the search as the default max heap setting in Java is ¼ of
total system memory (which is insufficient for optimal performance). We recommend
that you can allocate a minimum of 4G or 6G for standard tryptic digestions.

Expected Behavior

The first time running MSFragger on a new protein database or set of search
parameters with a given database, it will first perform an in-silico digestion, create, and
cache the peptide index (in .pepindex files adjacent to where the FASTA database is
stored). These pepindex files can be safely removed at any time and should be
removed to free up disk space when a set of search parameters is no longer used
(MSFragger will automatically re-generate the index as needed).

The process begins with filtering and in-silico digestion subject to the digestion
parameters.

Followed by peptide sorting and de-duplication. The non-redundant set of peptides are
then evaluated to generate the set of variably modified peptides (based on the specified
variable modifications) which are then sorted by mass and stored.

After peptide index generation is complete (or is read from disk in the below
screenshot). MSFragger selects the fragment index bin width to use and estimates the
memory available for fragment index storage based on the available memory (in this
case, 8GB of memory was made available to the Java Virtual Machine, of which
MSFragger estimates that 4976.67MB can be safely reserved for fragment index
operations). It then computes the number of theoretical fragments to be generated for
the entire index, the number of slices or iterations (in multi-pass searches when there is
insufficient memory), and the total amount of memory represented by the entire
fragment index. The fragment index is then generated, and a time is reported for the
index generation time (at the end of each Operating on slice 1 of X: line, 4770 ms
below). If the maximum fragment slice size is very small compared to your desired
amount of system memory or the number of slices is unexpectedly high, double check
that the -Xmx flag is correctly set.

Search begins and the current file is reported, along with the time needed to read and
pre-process the MS/MS data, along with current search progress.

At the completion of the search, a completed time is reported, and the results are
written to disk in the same folder as the MS/MS data (if they are not in the same folder
as your working directory). Note that there is a current bug that causes MSFragger to
incorrectly display the average rate of matching at the conclusion of the run (although
the total time can be divided by the total number of spectra to calculate this value).

Output Files

.fragtmp In cases of fragment index fragmentation (in limited memory

scenarios), MSFragger will iteratively load each MS/MS run and
search loaded spectra against the current index slice before working
on the next index slice. The partial search results are then stored in
these .fragtmp files. In the event that MSFragger is terminated in
the middle of a search, it will recover its partial results using these
files. At the end of the last index slice, MSFragger will read all such
.fragtmp files and generate an aggregated results file (identical to
one that would be generated if it had the memory to search against
all peptides in a single pass). These .fragtmp files are then
automatically deleted. These can be safely removed if you no
longer wish to continue an aborted search or if MSFragger
somehow fails to remove them at the conclusion of a successful
search.

Location: Same directory as MS/MS files

.pepindex MSFragger stores the computed peptide index in .pepindex files
adjacent to the protein database files to remove the need to
re-compute the index if search parameters are unchanged in
subsequent runs. These .pepindex indices can be safely removed
and MSFragger will re-compute the index again at runtime if
needed.

Location: Same directory as protein database

Results Files
(eg. .pep.xml)

These are the pepXML or TSV output files containing the peptide
identifications. The file extension is specified in the search
parameters so specifying a .pep.xml extension with output_format =
tsv will output .pep.xml files with TSV content.

Location: Same directory as MS/MS files

Interpretation of Output

For pepXML outputs, these can be used for downstream processing using
PeptideProphet in TPP directly. For viewing of results or conversion to other peptide
identification result formats for use in other pipelines or tools that do not support
pepXML, we recommend first converting to the mzIdentML format using the tool
idconvert as part of the ProteoWizard package. The pepXML generated by MSFragger
validates against v 1.18 of the pepXML schema and should be compatible with any
downstream tools supporting the pepXML format.

The output fields of the TSV file produced by MSFragger are listed below:

ScanID
Precursor neutral mass (Da)
Retention time (minutes)
Precursor charge
Hit rank
Peptide Sequence
Upstream Amino Acid
Downstream Amino Acid
Protein
Matched fragment ions
Total possible number of matched theoretical fragment ions
Neutral mass of peptide (including any variable modifications) (Da)
Mass difference
Number of tryptic termini
Number of missed cleavages
Variable modifications detected

(starts with M, separated by |, formated as position,mass)
Hyperscore
Next score
Intercept of expectation model (expectation in log space)
Slope of expectation model (expectation in log space)

